

Understanding Ozone formation in Spain

María Teresa Pay, Marc Guevara, *Oriol Jorba*, and Carlos Pérez García-Pando

Earth Sciences Department, Barcelona Supercomputing Center

2n Congrés Qualitat de l'aire

Motivation

O₃ dynamic

Sources: Millán et al., 1997, 2000, 2014; Gangoiti et al, 2001, 2002, 2006; Toll and Baldasano, 2000

O₃ Trends and exceedances

Source: Querol et al. (2016).

Open questions:

- What are the sources responsible for the high O₃ concentration in Spain?
- Can administrations implement control strategies that are effective to reduce high O₃ concentration?

CALIOPE air quality modelling system

www.bsc.es/caliope

- WRF-ARWv3.5 (RRTM/WSM3/YSU/NoahLSM)
- Ver. Res.: 37σ/50hPa (top)
- Hor. Res: 12km (EU) 4km (IP) 1km (CAT,MAD,etc)
- IC/BC (EU12/IP4): GFS (NCEP) / nesting EU12

Als:

- HERMESv2.0 and v3.0
- EU12: HERMES-DIS (EMEP, TNO-MACC)
- IP4: HERMES-BOUP (Spain) + HERMES-DIS(Europe)
- Biogenic emission MEGANv2.0.4

- CMAQv5.0.2 (ISAM, CB05TUCL, AERO6)
- Ver. Res: 37σ / 50hPa (top)
- Hor. Res: 12km (EU) 4km (IP) 1km (CAT,MAD,etc)
- BC (EU12/IP4): MOZART4-GEOS-5 & CAMS
- MCIPv4.0

Air quality products Coogle pla App Store

Source apportionment

- + Straightforward for any model
- Mass inconsistency
- Not real atmospheric conditions
- High computational resources

Emissions are critical

- + Time saving (one simulation)
- + Mass consistency
- + Real atmospheric conditions
- + Appropriate secondary pollutant (O₃)
- Model coding required

(CMAQ-ISAM)

Experiment: sector emissions + imported O₃

Experiment set-up

Results

Results

- Imported
- Others
- **Power Plants**
- Industry
- On-road transport of 60-
- obs
- cmaq

Results

- Imported
- Others
- Power Plants
- Industry
- On-road transport of 60-
- obs
- cmaq

Conclusions

Valuable methodology to characterize source contributions

Barcelona

- **Regional/local source** contributions dominate O₃ during peaks (i.e., traffic and shipping)
- **Imported O₃** to the IP is a main contributor to ground-level O₃ concentration overall in summer in Spain (background levels).
- **Modelled mitigation strategies** have been designed mostly for targeting primary pollutants and the traffic sector.

Thank you

We acknowledge collaborators: Xavier Querol (CSIC), Gotzon Gangoiti (UV/EHU), Sergey Napelenok (US EPA).

This research has been supported by,

- The Ministerio de Economía y Competitividad and FEDER funds under the PAISA (CGL2016-75725-R) project.
- The AXA Chair in Sand and Dust Storms (AXA Research Fund).
- The authors acknowledge RES for awarding access to Marenostrum4 based in Spain at the Barcelona Supercomputing Center through the AECT-2017-1-0008 project.

oriol.jorba@bsc.es